

Wellington 19 ES08018 Barcelona T +34 933 09 34 04 qualprod@itec.cat itec.cat

Evaluación Técnica Europea

ETA 09/0115 de 04.09.2019

Parte general

Organismo de Evaluación Técnica que emite la ETE: ITeC

El ITeC ha sido designado de acuerdo con el Artículo 29 del Reglamento (EU) No 305/2011 y es miembro de EOTA (European Organisation for Technical Assessment)

Nombre del comercial del producto de construcción	Kit PF-ALU-PL
Área del producto a la que pertenece	Kit de subestructura y fijaciones para revestimientos de fachada ventilada o no ventilada.
Fabricante	MECANISMOS, ANCLAJES Y SISTEMAS AUTOPORTANTES SL - MASA C/ Compositor Bach, 14-16 Pol. Ind. Can Jardí ES-08191 RUBÍ Barcelona, España
Planta de fabricación	C/ Compositor Bach, 14-16 Pol. Ind. Can Jardí ES-08191 RUBÍ Barcelona, España
La presente Evaluación Técnica Europea contiene	38 páginas incluyendo 6 anexos que forman parte del documento.
La presente Evaluación Técnica Europea se emite de acuerdo con el Reglamento (EU) 305/2011, en base a	EAD 090034-00-0404 Kit de subestructura y fijaciones para revestimientos de fachada ventilada o no ventilada.
Esta ETE reemplaza la	ETA 09/0115 emitida el 07.06.2013.

Comentarios Generales

Las traducciones de esta Evaluación Técnica Europea a otros idiomas deben corresponder completamente con el documento original emitido y deben ser identificadas como tales.

La reproducción de la presente Evaluación Técnica Europea, incluyendo si transmisión por medios electrónicos, debe ser integral. Sin embargo, se podrán realizar reproducciones parciales bajo el consentimiento escrito del Organismo de Evaluación Técnica. Cualquier reproducción parcial se deberá identificar como tal.

Partes específicas de la Evaluación Técnica Europea

1 Descripción técnica del producto

El kit PF-ALU-PL para la sujeción de elementos de revestimiento¹ (elementos de revestimiento fijados a pared exterior o elementos de revestimiento fijados a frente de forjado) de:

- Fijaciones para elementos de revestimiento según el Tipo 3 indicado en el EAD 090034-00-0404:
 - 1. Grapas de acero inoxidable GR-PL para la sujeción de elementos de revestimiento.
 - 2. Tornillos autotaladrantes de acero inoxidable entre la grapa y el perfil de la subestructura.
 - 3. Componente auxiliar: protector de raíl de plástico.
- Subestructura:
 - 4. Perfiles verticales de aleación de aluminio PF-AL-U.
 - 5. Ménsulas:
 - Ménsulas de aleación de aluminio ES-ALU-A, ES-ALU-V y ES-ALU-E.
 - Ménsulas de acero inoxidable ES-INOX-E y ES-INOX-A.
 - . Tornillos autotaladrantes de acero inoxidable entre el perfil de la subestructura y las ménsulas.

Las grapas GR-PL son fijaciones tipo raíl de acero inoxidable para elementos de revestimiento con ranura.

Una grapa soporta dos o cuatro elementos de revestimiento. Y se necesitan cuatro grapas para soportar un elemento de revestimiento.

El kit PF-ALU-PL está compuesto por componentes mecánicos. No se necesitan adhesivos para su montaie.

El kit PF-ALU-PL no es un elemento de construcción estructural. No contribuye a la estabilidad de la estructura donde está instalado.

Los siguientes elementos de fachada ventilada o sus componentes no son parte de esta ETE.

- Los elementos de revestimiento².
- Las fijaciones entre la subestructura y la estructura soporte³.
- Las otras capas de la fachada, como el aislamiento y las hojas interiores.

Las características geométricas y las propiedades del material de cada componente se describen en los anexos indicados en la siguiente tabla:

Tabla 1.1: Anexos de características geométricas y propiedades de material de los componentes del kit.

Componente	Anexos de características geométricas y propiedades de material
Grapas GR-PL	Anexo 2
Perfiles verticales	Anexo 3
Ménsulas	Anexo 4
Tornillos autotaladrantes	Anexo 5

De ahora en adelante este término se refiere tanto a elementos de revestimiento fijados a pared exterior como a los elementos de revestimiento fijados a frente de forjado.

² Cuando los elementos de revestimiento son fijados a pared exterior, aplican otros EADs (p.ej. EAD 090062, EAD 090020, etc.).

³ El término "estructura soporte" se refiere a las siguientes descripciones:

⁻ El muro, que en sí mismo cumple con los requisitos de impermeabilidad al aire y resistencia mecánica (resistencia a cargas estáticas y dinámicas). El muro soporte puede ser de albañilería (cerámica, hormigón o piedra), hormigón (in situ o como paneles prefabricados), y entramados de madera o metálicos.

 ⁻ La estructura de soporte del edificio, la cual no cumple en sí misma el requisito de impermeabilidad al aire pero si cumple el requisito de resistencia mecánica (resistencia a cargas estáticas y dinámicas). Normalmente la estructura es de hormigón (in situ o prefabricado), entramados de madera o metálicos. En este caso, los requisitos de impermeabilidad al aire serán proporcionados por las hojas interiores de la fachada.

2 Especificación del uso(s) previsto(s) de acuerdo con el Documento de Evaluación Europeo aplicable (de ahora en adelante, DEE)

El kit PF-ALU-PL se usa como fijación mecánica de elementos de revestimiento (elementos de revestimiento fijados a pared exterior o elementos de revestimiento fijados a frente de forjado) en fachadas con cámara de aire, ventiladas o no ventiladas, y previsto para su uso sobre estructuras soporte las cuales cumplen con los requisitos de resistencia mecánica.

El kit PF-ALU-PL se utiliza con elementos de revestimiento (p.ej. piedras naturales según EN 1469) con perforaciones de espiga (véase el apartado A6.1 del Anexo 6 para más información sobre las especificaciones de los elementos de revestimiento).

Los elementos de revestimiento no son parte del kit objeto de esta ETE. La seguridad de uso de los elementos de revestimiento tiene que ser evaluada separadamente.

Las disposiciones estipuladas en esta ETE se basan en una vida útil de al menos 25 años para el kit PF-ALU-PL. Las indicaciones dadas sobre la vida útil no deben interpretarse como una garantía dada por el fabricante, sino que deben considerarse como un medio para la elección correcta del producto en relación con la vida útil esperada de las obras.

El kit PF-ALU-PL está formado por componentes constructivos no portantes. No contribuye directamente a la estabilidad del muro sobre el que se instala.

El kit PF-ALU-PL no está previsto para asegurar la estanqueidad al aire de la envolvente del edificio.

Los datos e información detallada en relación con los criterios de diseño, instalación, mantenimiento y reparación se indican en el Anexo 6.

3 Prestaciones del producto y referencia a los métodos usados para su evaluación

La evaluación del kit PF-ALU-PL para el uso previsto se ha llevado a cabo de acuerdo con el EAD 090034-00-0404 Kit de subestructura y fijaciones para revestimientos de fachada ventilada o no ventilada.

Tabla 3.1: Resumen de prestaciones del kit PF-ALU-PL (véanse también prestaciones detalladas en los apartados relevantes).

Fijaciones mecánicas de elementos de revestimiento (elementos de revestimiento fijados a pared exterior o

Producto: Kit PF-ALU-PL		Uso previsto:	elementos de revestimiento fijados a pared exterior o elementos de revestimiento fijados a frente de forjado) en fachadas ventiladas o no ventiladas.				
Requisito básico Apartado ETE		Características eser	nciales	Prestación			
RB 2 Seguridad en caso de 3.1 incendio			Reacción al fuego		A1		
		3.2	Resistencia al viento		3000 Pa (succión) 4000 Pa (presión)		
		3.3	Resistencia del kit a l	≤ 0,02 mm tras 1 hora			
	3.		Resistencia a fuerza elemento de revestim	Véase la tabla 3.3			
		3.5	Resistencia a fuerza elemento de revestim	Véase la tabla 3.4			
RB 4 Seguridad y			Resistencia a cargas elemento de revestim	No evaluado			
accesibilidad utilización	l de		Resistencia de las fija revestimiento en caso	No relevante			
dillizacion.		3.6	Resistencia al atrave los perfiles	10,0 kN			
		3.7	Resistencia al arranc los perfiles	amiento de las fijaciones sobre	3,47 kN		
			Inercia y resistencia	de los perfiles	Véase el Anexo 3		
		3.9	Resistencia a fuerza	vertical de las ménsulas	Véase la tabla 3.7		
		3.10	Resistencia a fuerza	Véase la tabla 3.8			

Tabla 3.1: Resumen de prestaciones del kit PF-ALU-PL (véanse también prestaciones detalladas en los apartados relevantes).

Producto: Kit PF-ALU-PL Use	so previsto:	Fijaciones mecánicas de elementos de revestimiento (elementos de revestimiento fijados a pared exterior o elementos de revestimiento fijados a frente de forjado) en fachadas ventiladas o no ventiladas.
-----------------------------	--------------	---

Requisito básico	Apartado ETE	Características esenciales	Prestación
	3.11	Características mecánicas de las fijaciones de la subestructura	Véase la tabla 3.6
	3.12	Corrosión	Véase el apartado 3.12

Información complementaria:

Los requisitos relacionados con la resistencia mecánica y estabilidad de las partes no portantes de las obras no se incluyen en el requisito básico *Resistencia mecánica y estabilidad* (RB 1) sino que se consideran bajo el Requisito Básico *Seguridad y accesibilidad de utilización* (RB 4).

El requisito de resistencia al fuego es aplicable al muro en sí mismo (de obra de fábrica, de hormigón, de estructura metálica o de madera) y no solo al kit PF-ALU-PL.

3.1 Reacción al fuego

La reacción al fuego del kit PF-ALU-PL según el Reglamento Delegado de la Comisión (UE) 2016/364 y EN 13501-1, es Clase A1 sin necesidad de ensayo se la Decisión 96/603/EC y sus modificaciones.

Los protectores del raíl pueden ser considerados como pequeños componentes, por tanto, pueden ser ignorados y no es necesario su ensayo para la determinación de la reacción al fuego.

Nota: El escenario europeo para el fuego en fachadas no está definido. En algunos estados miembros, la clasificación del revestimiento exterior de fachada según el EN 13501-1 podría resultar insuficiente para el uso en fachada. Hasta que el sistema de clasificación europeo existente no se complete, para el revestimiento exterior de fachada puede ser necesario realizar una evaluación adicional de acuerdo con los requisitos nacionales (p.ej. en base a un ensayo a gran escala) para cumplir con la legislación de los estados miembros.

3.2 Resistencia a la acción del viento

La resistencia al viento del kit PF-ALU-PL ha sido determinada según el apartado 2.2.2 del EAD 090034-00-0404 considerando los ensayos de resistencia a succión y presión de viento y la resistencia mecánica de los componentes (véanse los apartados 3.4 a 3.11). Los resultados de los ensayos y los valores calculados para los ensayos se indican en la tabla 3.2.

Para otros sistemas montados, la acción de viento obtenida por el cálculo en base a la resistencia mecánica de los componentes de los kits no debe ser superior a la fuerza máxima obtenida en los ensayos.

Tabla 3.2: Resultados y valores calculados para la muestra de ensayo.

Resultados	de ensayo (1)			Valores calculados
Ensayo	Q máxima (Pa)	Desplazamiento bajo fuerza máxima (mm)	Deformación después de 1 min de recuperación (mm)	Fuerza (Pa) (4)
Succión	3000 (2)	21,6 (3)	3,28	2460
Presión	4000 (2)	9,65 (3)	3,03	- 3460

- (1) Probeta de ensayo: elementos de revestimiento 910x794x30 mm; grapa GR-PL M8 con junta en posición horizontal; tres perfiles verticales PF-ALU-80 (dimensión mínima para el espacio del perfil vertical 2700 mm), distancia 546 mm; ménsulas ES-ALU-A/V 87/200, distancia 2700 mm. Las características de los componentes se indican en los Anexos 2 y 3.
- (2) Valor máximo alcanzado sin fallo del kit PF-ALU-PL.
- (3) Deformación medida en el perfil vertical central.
- (4) Fuerza calculada para configuración de probeta de ensayo considerando 1 mm de deformación irreversible (F_c) de la grapa. Valores calculados para composición de probeta de ensayo utilizando fórmulas de vigas simples.

3.3 Resistencia del kit a fuerza vertical

La resistencia a fuerza vertical del kit PF-ALU-PL ha sido ensayado según el apartado 2.2.3 del EAD 090034-00-0404.

La carga estática vertical máxima considerada en el ensayo es 2,59 kN para el kit PF-ALU-PL (cada grapa soporta 1,29 kN). Ambos valores son superiores a los indicados en la tabla 3.3 como valores característicos Fc a 1 mm de deformación irreversible.

La deformación máxima obtenida ha sido de 0,02 mm después de 1 hora.

3.4 Resistencia a fuerza vertical de las fijaciones del elemento de revestimiento

La resistencia a fuerza vertical de las fijaciones GR-PL de los elementos de revestimiento ha sido ensayada según el apartado 2.2.4 del EAD 090034-00-0404. Los valores medios y característicos se indican en la tabla 3.3.

Tabla 3.3: Resistencia a fuerza vertical de las fijaciones GR-PL de los elementos de revestimiento.

Tipo de grapa⁴		1 mm de irreversible		Fuerza última			
	F _m (kN)	F _c (kN)	F _{u,m} (kN)	F _{u,c} (kN)	Máxima deformación (mm)		
GR-PL-46	1,29	0,66	4,50	3,87	24,7		
GR-PL-100	1,23	0,98	6,99	6,34	27,5		
GR-PL-100/2	1,85	0,50	2,30	1,91	2,9		

Donde: $F_m = es el valor medio;$

 F_c = es el valor característico que da una confianza del 75% de que el 95% de los resultados será mayor que este valor.

3.5 Resistencia a fuerza horizontal de las fijaciones del elemento de revestimiento

La resistencia a fuerza horizontal de las fijaciones GR-PL de los elementos de revestimiento ha sido ensayada según el apartado 2.2.5 del EAD 090034-00-0404. Los valores medios y característicos se indican en la tabla 3.4.

Tabla 3.4: Resistencia a fuerza horizontal de las fijaciones GR-PL de los elementos de revestimiento.

Tipo de grapa⁴		1 mm de irreversible		Fuerza última			
	F _m (kN)	F _c (kN)	F _{u,m} (kN)	F _{u,c} (kN)	Máxima deformación (mm)		
GR-PL-46	1,79	0,85	6,96	6,01	10,0		
GR-PL-100	2,62	1,85	7,57	6,62	9,2		
GR-PL-100/2	1,53	0,95	2,22	1,94	2,9		

Donde: $F_m = es el valor medio;$

 F_c = es el valor característico que da una confianza del 75% de que el 95% de los resultados será mayor que este valor.

3.6 Resistencia al atravesamiento de las fijaciones sobre el perfil

La resistencia al atravesamiento de las fijaciones sobre el perfil ha sido ensayada según el apartado 2.2.8 del EAD 090034-00-0404. Los valores medios y característicos se indican en la tabla 3.5.

_

⁴ Estos componentes están definidos en el Anexo 2.

Tabla 3.5: Valor de fallo de la resistencia al atravesamiento.

Tipo de perfil ⁵ (*)	R _s (kN)	R _{sc} (kN)
PF-AL-U-40		
PF-AL-U-60		
PF-AL-U-80	10.7	10.0
PF-AL-U-100	10,7	10,0
PF-AL-T-60		
PF-AL-T-80		

Donde: R_s es el valor medio.

3.7 Resistencia al arrancamiento de las fijaciones sobre el perfil

La resistencia al arrancamiento de las fijaciones sobre el perfil ha sido ensayada según el apartado 2.2.9 del EAD 090034-00-0404. Los valores medios y característicos se indican en la tabla 3.6.

Tabla 3.6: Resistencia al arrancamiento y a la fuerza a cortante de los tornillos de la subestructura.

Tipos de tornillos autotaladrantes	Arranca	miento	Fuerza a cortante		
	R _m (kN)	R _c (kN)	R _m (kN)	R _c (kN)	
M6x25 PB (*)	3,96	3,47	8,96	7,96	

Donde: R_m es el valor medio.

3.8 Inercia y resistencia de los perfiles

Las siguientes características de los perfiles se indican en el Anexo 3:

- Forma y dimensiones de las secciones de los perfiles.
- Inercia de las secciones de los perfiles.
- Límite elástico mínimo del material de los perfiles.

3.9 Resistencia a fuerza vertical de las ménsulas

La resistencia a fuerza vertical de las ménsulas ha sido ensayada según el apartado 2.2.11 del EAD 090034-00-0404. Los valores medios y característicos se indican en la tabla 3.7.

Tabla 3.7: Resistencia a fuerza vertical de las ménsulas.

Tipo de ménsula ⁶ (mm)		Resistencia (kN) a 1 mm de desplazamiento (**)		Resistencia (kN) a 3 mm de desplazamiento (**)		Resistencia (kN) a ΔL = 0,2%·L mm de deformación permanente (**)		Resistencia última (kN) (**)	
		Fm	Fc	Fm	Fc	Fm	Fc	Fm	Fc
EO 4111 4	45/100	3,9	2,7	13,3	10,3	1,8	0,5	25,0	25,0
ES-ALU-A ES-ALU-V	67/100 (*) 87/100	2,6	2,2	5,2	4,1	1,8	1,4	13,0	11,2

⁵ Estos componentes están definidos en el Anexo 3.

 R_{sc} es el valor característico que da una confianza del 75% de que el 95% de los resultados será mayor que este valor. (*) Los tornillos de autotaladrantes utilizados en los ensayos de acero inoxidable de calidad A2-70 se indican en el Anexo 6.

 R_c es el valor característico que da una confianza del 75% de que el 95% de los resultados será mayor que este valor. (*) Los tornillos de autotaladrantes utilizados en los ensayos de acero inoxidable de calidad A2-70 se indican en el Anexo 6.

⁶ Estos componentes están definidos en el Anexo 4.

Tabla 3.7: Resistencia a fuerza vertical de las ménsulas.

Tipo de ménsula ⁶ (mm)		Resistencia (kN) a 1 mm de desplazamiento (**)		Resistencia (kN) a 3 mm de desplazamiento (**)		Resistencia (kN) a ΔL = 0,2%-L mm de deformación permanente (**)		Resistencia última (kN) (**)	
		Fm	Fc	Fm	Fc	Fm	Fc	Fm	Fc
	117/100	2,6	1,4	5,7	4,8	2,8	0,3	15,0	15,0
	148/100	1,2	0,7	3,1	2,3	1,2	0,1	12,5	12,5
	177/100	1,3	1,1	2,9	2,5	2,4	1,7	10,0	10,0
	208/100	1,0	0,5	2,1	1,5	2,1	0,6	7,5	7,5
	238/100 (*) 267/100	0,7	0,4	1,7	1,5	2,7	1,6	6,5	5,6
	238/100 (*) 267/100	0,8	0,6	1,5	1,3	1,5	1,2	2,9	2,8
ES-INOX-A	296/100 (*) 325/100	0,7	0,4	1,2	1,0	1,7	1,4	2,4	2,2
	67/200 (*) 87/200	6,8	5,5	17,4	13,6	4,1	2,8	30,9	28,7
	117/200	4,8	2,7	12,3	8,2	2,4	2,0	25,0	25,0
FC 4111 F	148/200	3,2	2,7	8,3	6,3	3,3	3,0	17,5	17,5
ES-ALU-E	177/200	2,0	1,2	5,5	4,5	1,9	1,2	12,5	12,5
	208/200	2,4	1,7	5,5	3,6	3,1	0,8	13,3	8,5
	238/200 (*) 267/200	2,9	1,6	5,8	3,1	7,5	7,1	20,0	19,4
	238/200 (*) 267/200	2,9	2,0	5,8	4,5	6,2	3,4	10,0	8,6
ES-INOX-E	296/200 (*) 325/200	2,2	2,0	4,5	3,8	5,6	3,9	11,2	8,3

Donde:

3.10 Resistencia a fuerza horizontal de las ménsulas

La resistencia a las ménsulas de la fuerza horizontal ha sido ensayada según el apartado 2.2.12 del EAD 090034-00-0404. Los valores medios y característicos se indican en la tabla 3.8.

Tabla 3.8: Resistencia a la fuerza horizontal de las ménsulas.

Tipo de ménsula i ^{Error!} Marcador no definido. (mm)		•	Resistencia (kN) a 1 mm de la deformación permanente		ı última (kN)
		Fm	Fc	Fm	Fc
	45/100	F 0	F 1	11.6	0.0
ES-ALU-A ES-ALU-V	67/100 (*)	5,8	5,1	11,6	9,9
	87/100	8,3	7,0	15,4	14,7
	117/100	10,4	8,4	18,7	15,4
	148/100	10,6	10,3	20,0	17,4
LO-ALO-V	177/100	10,5	8,2	20,3	18,6
	208/100	10.5	0.7	00.4	10.6
	238/100 (*)	10,5	8,7	20,1	18,6
	267/100	18,2	15,6	18,8	17,0
ES-INOX-E	238/100 (*)	11,4	7,5	18,1	16,1

F_m = valores medios; F_c = valores característicos que dan una confianza del 75% de que el 95% de los resultados será mayor que este valor.

^(*) Ménsula no ensayada. Valores obtenidos de otras ménsulas representativas.

^(**) Cuando la ménsula incluye una pieza que crea puente térmico (véase el Anexo 4), el valor de dicha resistencia debe reducirse aplicando el factor de reducción = 0,80.

Tabla 3.8: Resistencia a la fuerza horizontal de las ménsulas.

Tipo de ménsula i ^{Error!} Marcador no definido. (mm)		Resistencia (kN) a 1 mm de la deformación permanente		Resistencia última (kN)	
	(mm) —	Fm	Fc	Fm	Fc
	267/100 (*)				
	296/100 (*)				
	325/100				
	67/200 (*)	5,8	5,1	11,6	9,9
	87/200	16,7	14,0	21,7	20,4
	117/200	9,8	6,1	24,6	23,4
ES-ALU-E	148/200	13,1	9,0	24,2	23,1
ES-ALU-E	177/200	12,6	9,9	24,9	24,0
	208/200	8,5	4,2	25,4	22.2
	238/200 (*)	0,0	4,2	25,4	23,3
	267/200	24,5	21,8	25,1	22,3
ES-INOX-E	238/200 (*)				
	267/200	16,9	13,2	23,6	18,0
	296/200 (*)	10,9	13,2		10,0
	325/200				

Donde:

3.11 Características mecánicas de las fijaciones de la subestructura

La resistencia a la fuerza a cortante de las fijaciones de la subestructura ha sido ensayada (véase la tabla 3.6).

La resistencia a tracción de las fijaciones de la subestructura al menos cumple con los valores que se indican en la tabla 3.6 para la resistencia al arrancamiento.

3.12 Corrosión

Las grapas GR-PL son de acero inoxidable 1.4307 o 1.4404 según la norma EN 10088, y los tornillos roscados, los espárragos, tuercas y arandelas son de acero inoxidable, calidad A2 o A4 según la norma EN ISO 3506. Asimismo, los tornillos autotaladrantes de la subestructura son de acero inoxidable, calidad A2 o A4 según la norma EN ISO 3506.

Por tanto, estos componentes pueden ser usados en condiciones interiores secas o en condiciones interiores de humedad permanente y también en condiciones de exposición atmosférica exterior con categoría alta de corrosividad atmosférica (incluyendo ambientes industriales y marinos, C4 como se define en la norma ISO 9223) si no existen condiciones particularmente agresivas. Tales condiciones particularmente agresivas son p.ej. la inmersión permanente o alterna en agua de mar, las zonas de salpicadura de agua de mar, atmósferas clorhídricas de piscinas cubiertas o en atmósferas con contaminación química extrema (p.ej. plantas de desulfuración o túneles de carretera donde se usan materiales de deshielo).

Los perfiles y las ménsulas ES-ALU son de aleación de aluminio 6005A EP/O T6 según la norma EN 573, EN 1999 y EN 755. La durabilidad es de clase B y el espesor mínimo es de 3,0 mm. Por tanto, estos componentes pueden ser utilizados en las siguientes condiciones de exposición atmosférica exterior: ambiente rural, ambiente industrial/urbano moderado. En ambiente marino industrial estos componentes pueden ser utilizados si se protegen según se indica en la EN 1999-1-1.

Las ménsulas ES-INOX son de acero inoxidable 1.4307 según la norma EN 10088, por tanto, estas ménsulas pueden ser usados en condiciones interiores secas o en condiciones interiores de humedad

 F_m = valores medios; F_c = valores característicos que dan una confianza del 75% de que el 95% de los resultados será mayor que este valor.

^(*) Ménsula no ensayada. Se aplican los valores mínimos.

permanente y también en condiciones de exposición atmosférica exterior con categoría alta de corrosividad atmosférica (incluyendo ambientes industriales y marinos, C4 como se define en la norma ISO 9223) si no existen condiciones particularmente agresivas. Tales condiciones particularmente agresivas son p.ej. la inmersión permanente o alterna en agua de mar, las zonas de salpicadura de agua de mar, atmósferas clorhídricas de piscinas cubiertas o en atmósferas con contaminación química extrema (p.ej. plantas de desulfuración o túneles de carretera donde se usan materiales de deshielo).

Adicionalmente, se deberá prestar especial atención para prevenir la posible corrosión por par galvánico.

4 Sistema aplicado para la evaluación y verificación de la constancia de las prestaciones (EVCP en adelante), con referencia a su base legal

De acuerdo con la Decisión 2003/640/EC, modificada por la Comisión Europea⁷, aplica el sistema de EVCP (véase el reglamento delegado (UE) No 568/2014 que modifica el Anexo V del Reglamento (UE) 305/2011) indicado en la siguiente tabla.

Tabla 4.1: Sistema de EVCP aplicable.

Producto	Uso previsto	Nivel(es) o clase(s)	Sistema
Kits de subestructura y	Acabados exteriores de paredes	Cualquiera	2+
fijaciones para revestimientos de fachada	Para usos sujetos a la reglamentación de reacción al fuego	A1	4

Detalles técnicos necesarios para la implementación del sistema de EVCP, según lo previsto en el DEE de aplicación

Todos los detalles técnicos necesarios para la implementación del sistema de EVCP se establecen en el *Plan de Control* depositado en el ITeC⁸, con el que el control de producción en fábrica operado por el fabricante deberá estar conforme.

Emitido en Barcelona a 4 de septiembre de 2019

por el Instituto de Tecnología de la Construcción de Cataluña.

Ferran Bermejo Nualart

Director técnico, ITeC

^{7 2001/308/}EC – Decisión de la Comisión con fecha 31 de enero 2001, publicado en el Diario Oficial de la Unión Europea (DOUE) L107/25 de 08/04/2001.

⁸ El Plan de Control es una parte confidencial de la ETE y accesible sólo para el organismo u organismos involucrados en el proceso de evaluación y verificación de la constancia de las prestaciones.

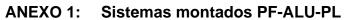
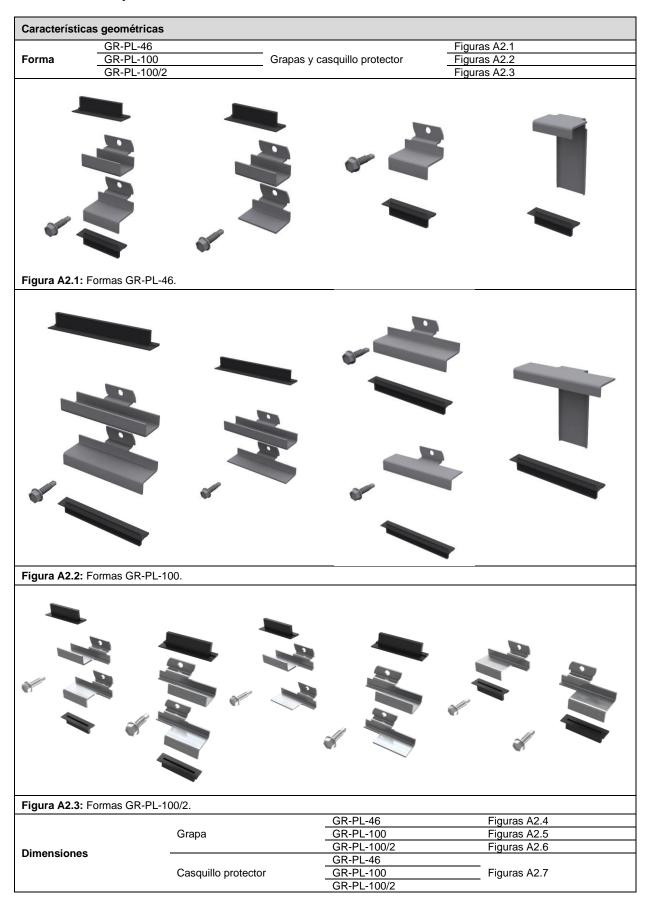
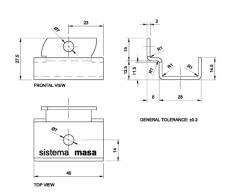
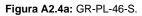



Figura A1.1: Sistema montado PF-ALU-PL.




ANEXO 2: Grapa GR-PL

Propiedades	de material	Valo	Valores		
	Tipo de material	Acero inoxidable 1.4307 (X2CrNi18-9)	Acero inoxidable 1.4404 (X2CrNiMo17-12-2)	EN 10088-1	
	Densidad (kg/m³)	7900	8000	EN 10088-1	
	Módulo de elasticidad at 20 °C (MPa)	200000	200000	EN 10088-1	
GR-PL	Coeficiente de expansión térmica at 20 °C-100 °C (µm/m·°C)	16,0	16,0	EN 10088-1	
	Límite elástico R _{p0,2} (MPa)	200	220	EN 10088-2	
	Carga de rotura R _m (MPa)	500-700	520-670	EN 10088-2	
	Elongación A (%)	45	45	EN 10088-2	
	Resistencia a la corrosión intergranular en condiciones de entrega	Sí	Sí	EN 10088-2	
Casquillos protectores	Tipo de material	Poliami	ida PA6		

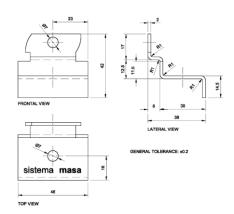


Figura A2.4b: GR-PL-46-I.

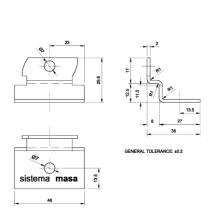


Figura A2.4c: GR-PL-46-TI.

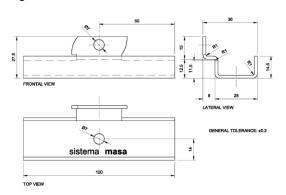


Figura A2.5a: GR-PL-100-S.

Figura A2.5c: GR-PL-100-SC.

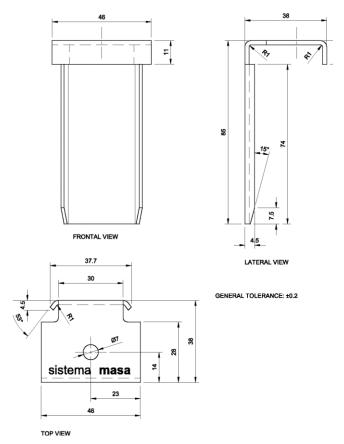


Figura A2.4d: GR-PL-46-TSE.

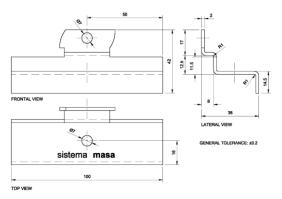


Figura A2.5b: GR-PL-100-I.

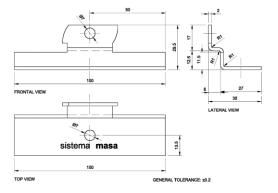
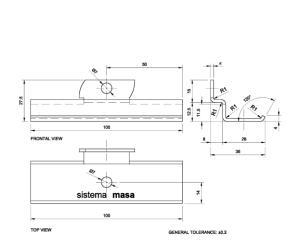



Figura A2.5d: GR-PL-100-TI.

FRONTAL VIEW

FRONTAL VIEW

37.7

LATERAL VIEW

Sistema masa

50

100

Figura A2.5e: GR-PL-100-TI 90°.

Figura A2.5f: GR-PL-100-TSE.

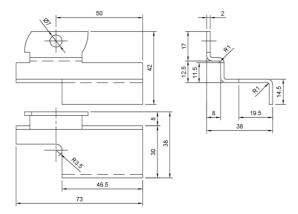


Figura A2.6a: GR-PL-100-I/2.

Figura A2.6b: GR-PL-100-I-I/2.

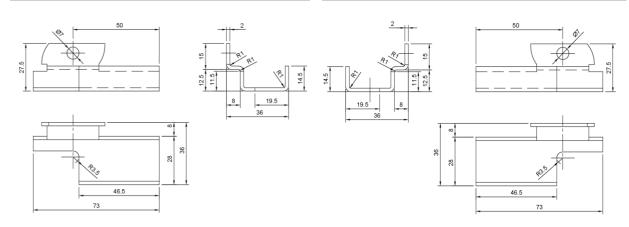


Figura A2.6c: GR-PL-100-S/2.

Figura A2.6d: GR-PL-100-S-I/2.

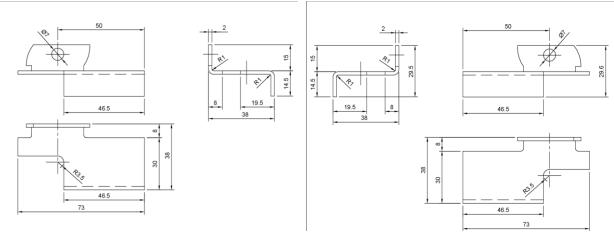


Figura A2.6e: GR-PL-100-T-S-C/2.

Figura A2.6f: GR-PL-100-T-S-C-I/2.

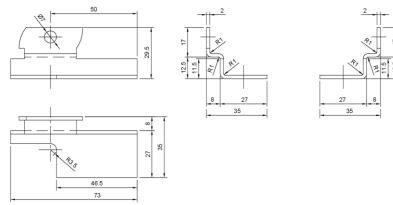


Figura A2.6g: GR-PL-100-T-I/2. Figura A2.6h: GR-PL-100-T-I-I/2.

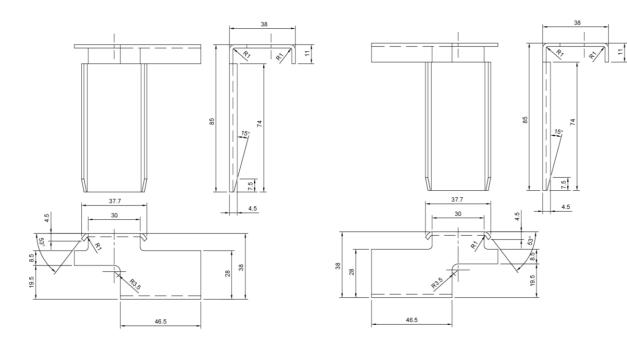


Figura A2.6i: GR-PL-100-TSE/2.

Figura A2.6j: GR-PL-100-TSE-I/2.

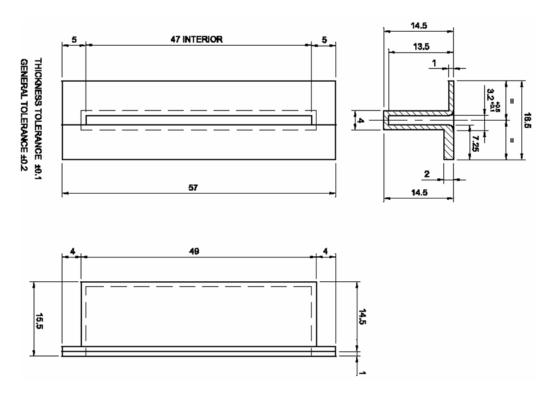


Figura A2.7a: Casquillo protector GR-PL-46 & GR-PL-100/2.

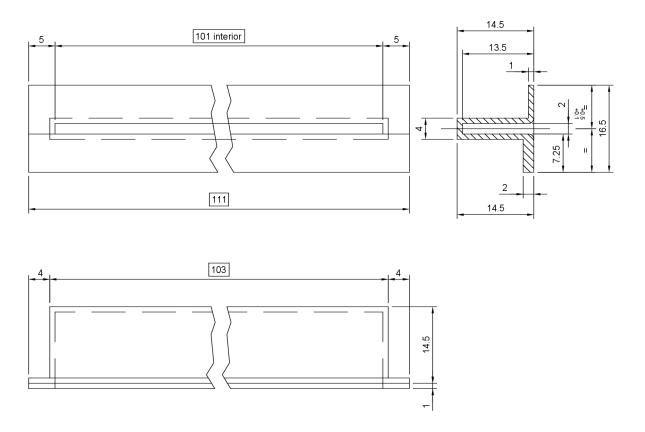


Figura A2.7b: Casquillo protector GR-PL-100.

ANEXO 3: Perfiles de la subestructura

Características (Características geométricas						
	PF-AL-U-40		>		>		
	PF-AL-U-60	- 10		-11			
	PF-AL-U-80	- 11		ш			- 10
Forma	PF-AL-U-100	1					
	PF-AL-T-60					1	
	PF-AL-T-80			L			
Dimensiones	dx	dy	L	L1 \	L2	Tolerancias	
PF-AL-U-40	(mm) 19,8	(mm) 18,4	(mm) 40	(mm) 24,1	(mm) 15,9	(mm) ± 0,15	
PF-AL-U-60	29,4	16,7	60	32,6	24,4	± 0,15 ± 0,15	_
PF-AL-U-80	41,0	15,0	80	43,2	35,0	± 0,15	- Figura A3.1
PF-AL-U-100	51,3	14,5	100	54,1	45,9	± 0,15	_
PF-AL-T-60	22,5	28,3	57	24,4	32,6	± 0,15	F' AO O
PF-AL-T-80	22,6	39,4	78,2	35,0	43,2	± 0,15	- Figura A3.2
				P-ALU-40			Figura A3.3
				P-ALU-60			Figura A3.4
Perfiles auxiliares	s entre perfiles verticales			P-ALU-80			Figura A3.5
	,			P-ALU-100			Figura A3.6
				P-AL-T-60 P-AL-T-80			- Figura A3.7
				AL-O-20			
Perfiles auxiliares	s para el ajuste de verticalid	ad		AL-O-40			Figura A3.8
	ción del perfil (cm ⁴)		(cm ⁴)		lyy (cm⁴)	1	
PF-AL-U-40		9,1			10,8		<u> </u>
PF-AL-U-60		22,			12,2		
PF-AL-U-80		49,3			13,5		
PF-AL-U-100		94,			16,3		
PF-AL-T-60		25,2			19,8		
PF-AL-T-80		57,4	4		25,5		

Propiedades del material	Valores	Referencia
Tipo de material	Aleación aluminio EN AW-6005A EP/O T6	EN 1999-1-1
Clase de durabilidad	Clase B	EN 1999-1-1
Densidad (kg/m³)	2700	EN 1999-1-1
Módulo de elasticidad (MPa)	70000	EN 1999-1-1
Coeficiente de expansión térmica (µm/m-°C)	23,0	EN 1999-1-1
Límite elástico R _{p0,2} (MPa)	225	EN 755-2 y EN 1999-1-1
Carga de rotura R _m (MPa)	270	EN 755-2 y EN 1999-1-1
Elongación A (%)	8	EN 755-2 y EN 1999-1-1
Coeficiente de Poisson	0,3	EN 1999-1-1
Módulo de elasticidad transversal, G (MPa)	27000	EN 1999-1-1

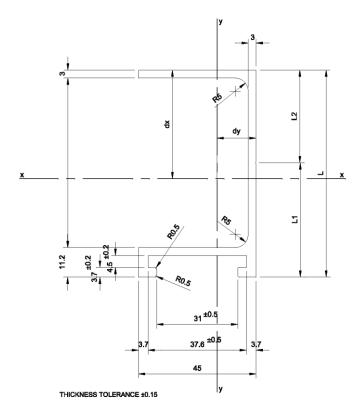


Figura A3.1: Perfil PF-AL-U.

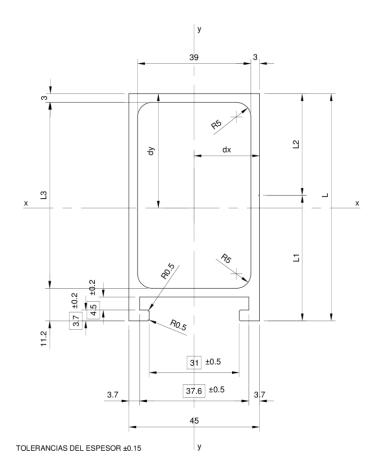


Figura A3.2: Perfil PF-AL-T.

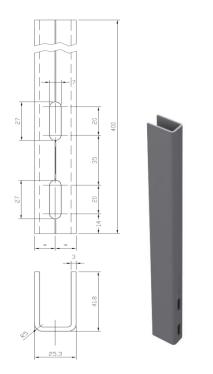


Figura A3.3: Perfil auxiliar EUP-ALU-40.

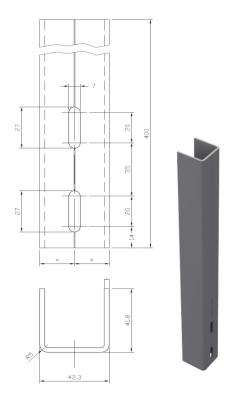


Figura A3.4: Perfil auxiliar EUP-ALU-60.

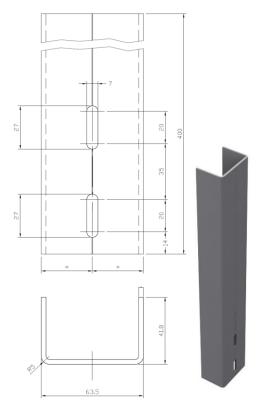


Figura A3.5: Perfil auxiliar EUP-ALU-80.

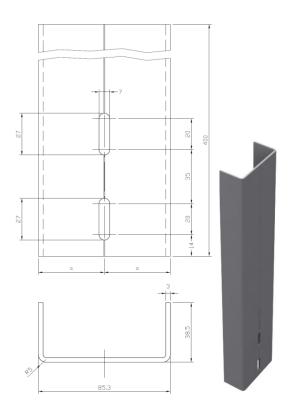


Figura A3.6: Perfil auxiliar EUP-ALU-100.

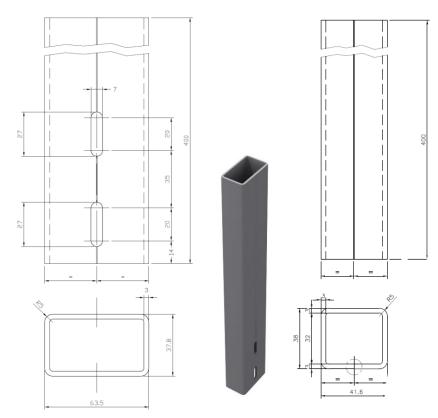


Figura A3.7: Perfil auxiliar EUP-ALU-T.

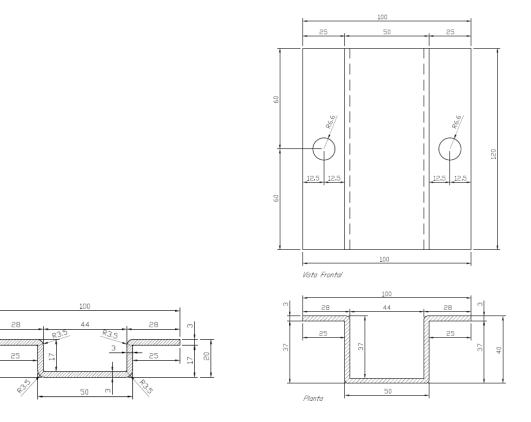


Figura A3.8: Perfil auxiliar ES-AL-O-20.

Figura A3.9: Perfil auxiliar ES-AL-O-40.

ANEXO 4: Ménsulas de la subestructura

A4.1. Ménsulas de aluminio

Características	geométricas					
		45/100				
		67/100				
		87/100	4			
		117/100				
	ES-ALU-A y	148/100			1	
	ES-ALU-V	177/100				
		208/100				
		238/100				
		267/100	ES-ALU	-A	ES-A	I U-V
_	-	67/200				
Forma		87/200				
		117/200				
		148/200				
	ES-ALU-E	177/200				
	LO ALO L	208/200				
		238/200				
		267/200		ES-ALU	J-E	
			L (mm)	L1 (mm)	Tolerancias (mm)	
		45/100			± 0,15	Figura A4.1
		67/100			± 0,15	Figura A4.2
	ES-ALU-A	87/100			± 0,15	Figura A4.3
		117/100	117		± 0,15	r igaia / t i.o
		148/100	148	_	± 0,15	_
		177/100	177	- 31	± 0,15	Figura A4.4
		208/100	208	-	± 0,15	_
		238/100			± 0,15	Figura A4.5
		267/100			± 0,15	Figura A4.6
		45/100			± 0,15	Figura A4.7
		67/100			± 0,15	
		87/100				Figure A4.8
					± 0,15	Figura A4.9
	EC 41111/	117/100 148/100	117	=	± 0,15	_
Dimensiones	ES-ALU-V		148	- 31	± 0,15	- Figura A4.10
(mm)		177/100	177	_	± 0,15	
()		208/100	208		± 0,15	F: A 4 4 4
		238/100			± 0,15	Figura A4.11
		267/100			± 0,15	Figura A4.12
		67/200			± 0,15	Figura A4.13
		87/200			± 0,15	Figura A4.14
		117/200	117	=	± 0,15	<u> </u>
	ES-ALU-E	148/200	148	- 31	± 0,15	- Figura A4.15
	·-·	177/200	177	- -	± 0,15	- iguia 74.13
		208/200	208		± 0,15	
		238/200			± 0,15	Figura A4.16
		267/200			± 0,15	Figura A4.17
	Pieza auxiliar para rotura de	Termostop 100				Figura A4.20a
	puente térmico	Termostop 200				Figura A4.20b

Propiedades del material	Valores	Referencia
Tipo de material	Aleación aluminio EN AW-6005A EP/O T6	EN 1999-1-1
Clase de durabilidad	Clase B	EN 1999-1-1
Densidad (kg/m³)	2700	EN 1999-1-1
Módulo de elasticidad (MPa)	70000	EN 1999-1-1
Coeficiente de expansión térmica (µm/m⋅ºC)	23,0	EN 1999-1-1
Límite elástico R _{p0,2} (MPa)	225	EN 755-2 & EN 1999-1-1
Carga de rotura R _m (MPa)	270	EN 755-2 & EN 1999-1-1
Elongación A (%)	8	EN 755-2 & EN 1999-1-1
Coeficiente de Poisson	0,3	EN 1999-1-1
Módulo de elasticidad transversal, G (MPa)	27000	EN 1999-1-1

A4.2. Ménsulas de acero inoxidable

s geométricas					
	238/100				
	267/100	_	-		
ES-INOX-A	296/100	_			
	325/100		ES	S-INOX-A	
	238/200		-		
ES-INOX-E	267/200			,	
	296/200	<u>_</u>			
	325/200	ES-INOX-E			
		L	L1	Tolerancias	
				(mm)	
				_	
ES-INOX-A				- ± 0,15	Figura A4.18
				_	3
				_	
ES-INOX-E				_ ± 0,15	Figura A4.19
				_	
	ES-INOX-A ES-INOX-A	238/100 267/100 267/100 325/100 238/200 267/200 ES-INOX-E 296/200 325/200 ES-INOX-A 238/100 267/100 296100 325/100 238/100 238/100 238/100 238/100 267/100	ES-INOX-A 296/100 238/200 238/200 238/200 267/200 ES-INOX-E 296/200 325/200 L (mm) 238/200 267/200 296/200 238 267/100 296 325/100 325 238/100 238 ES-INOX-E ES-INOX-E 296/200 296 325/100 296 325/100 296 296/200 296 296/200 296 296/200 296 296/200 296 296/200 296	ES-INOX-A 296/100 238/100 238/200 238/200 267/200 296/200 325/200 ES-INOX-E 238/100 238 128 267/100 267 157 296100 296 186 325/100 238 128 ES-INOX-E 238/100 238 128 ES-INOX-A 296/100 296 186 325/100 238 128 ES-INOX-B 238/100 238 128 ES-INOX-B 267/100 267 157 296100 296 186 325/100 296 186 325/100 296 186 238/100 296 186	ES-INOX-A 296/100 267/100 238/100 238/100 267/100 267/100 267/100 267/100 296/100 296/100 296/100 296/100 296/100 296/100 296/100 296/100 296/100 267/100

Propiedades del material	Valores	Referencia
Tipo de material	Acero inoxidable 1.4307 (X2CrNi18-9)	EN 10088-1
Densidad (kg/m³)	7900	EN 10088-1
Módulo elástico a 20 ºC (MPa)	200000	EN 10088-1
Coeficiente de expansión térmica a 20 °C-100 °C (μm/m-°C)	16,0	EN 10088-1
Límite elástico R _{p0,2} (MPa)	200	EN 10088-2
Carga de rotura R _m (MPa)	500-700	EN 10088-2
Elongación A (%)	45	EN 10088-2
Resistencia a la corrosión intergranular en condiciones de entrega	Sí	EN 10088-2

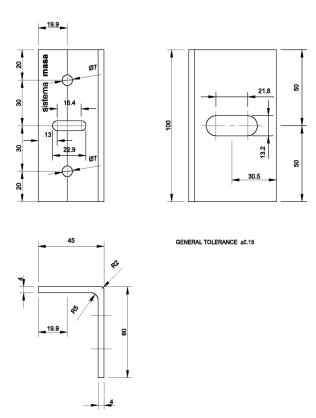


Figura A4.1: Ménsulas ES-ALU-45/100-A.

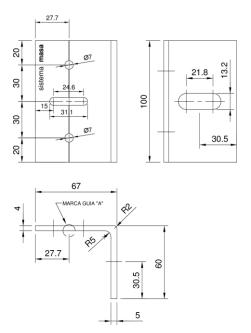


Figura A4.2: Ménsulas ES-ALU-67/100-A.

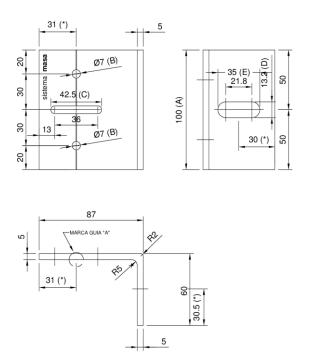


Figura A4.3: Ménsulas ES-ALU-87/100-A.

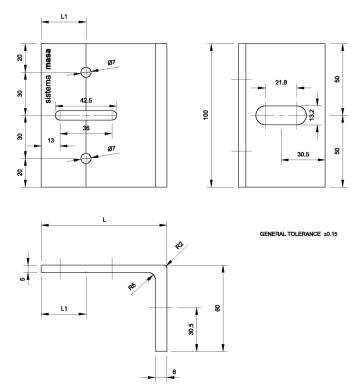


Figura A4.4: Ménsulas ES-ALU-(117/100; 148/100; 177/100 y 208/100)-A.

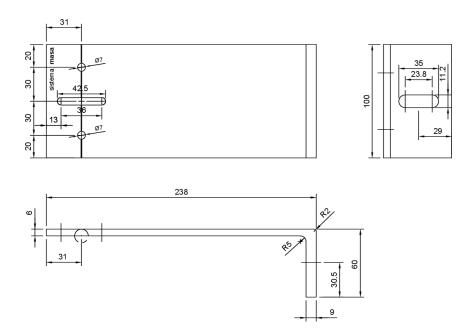


Figura A4.5: Ménsulas ES-ALU-238/100-A.

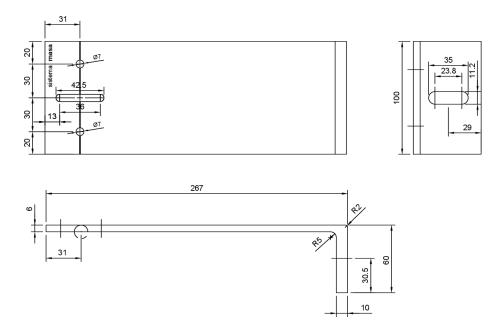


Figura A4.6: Ménsulas ES-ALU-267/100-A.

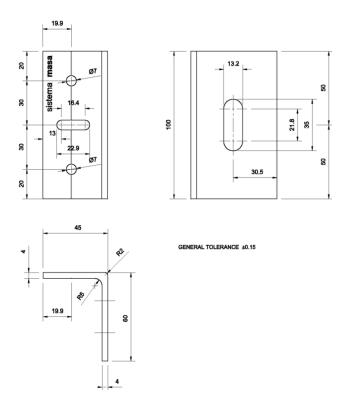


Figura A4.7: Ménsulas ES-ALU-45/100-V.

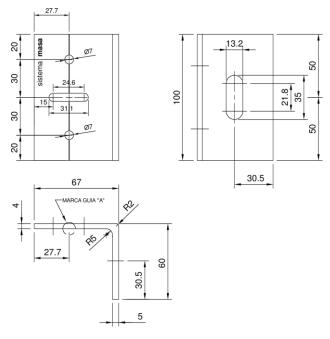


Figura A4.8: Ménsulas ES-ALU-67/100-V.

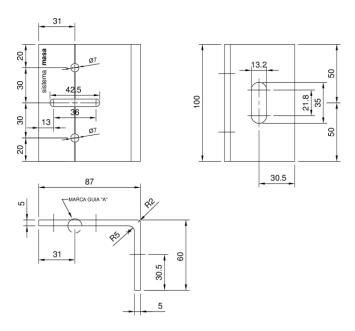


Figura A4.9: Ménsulas ES-ALU-87/100-V.

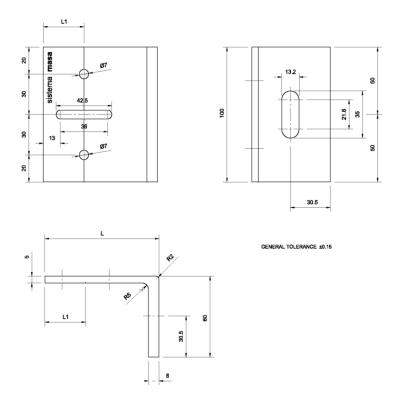


Figura A4.10: Ménsulas ES-ALU-(117/100; 148/100; 177/100 y 208/100)-V.

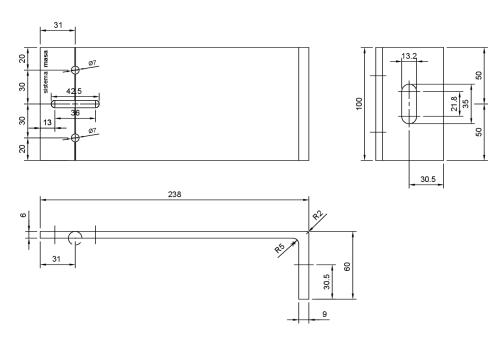


Figura A4.11: Ménsulas ES-ALU-238-V.

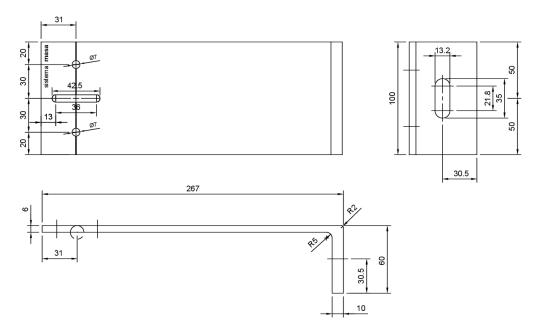


Figura A4.12: Ménsulas ES-ALU-267-V.

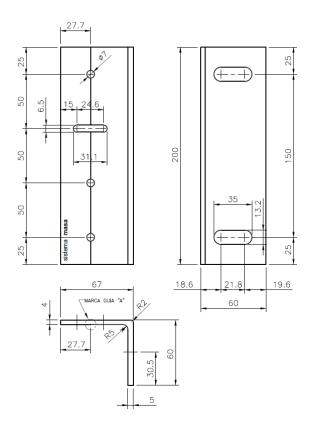


Figura A4.13: Ménsulas ES-ALU-67/200-E.

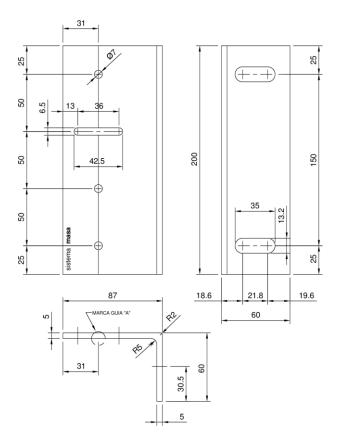


Figura A4.14: Ménsulas ES-ALU-87/200-E.

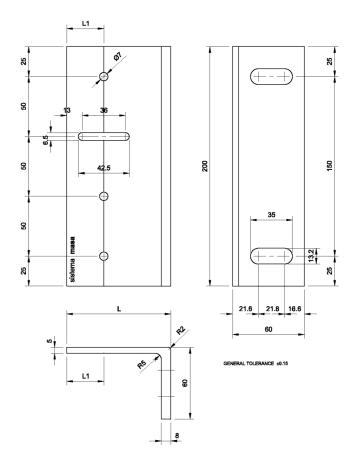


Figura A4.15: Ménsulas ES-ALU-(117/200; 148/200; 177/200 y 208/200)-E.

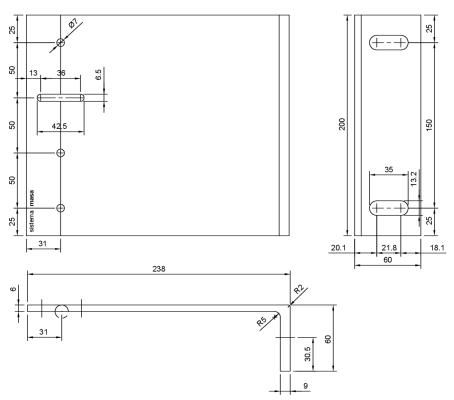


Figura A4.16: Ménsulas ES-ALU-238/200-E.

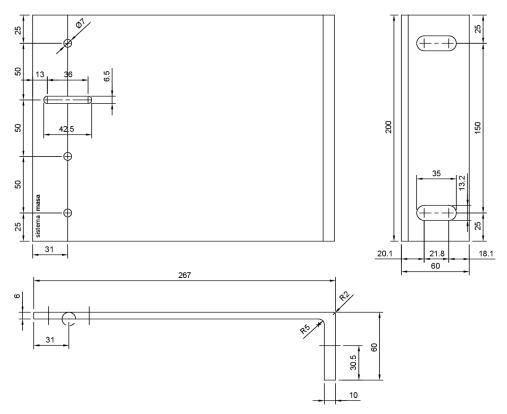


Figura A4.17: Ménsulas ES-ALU-267/200-E.

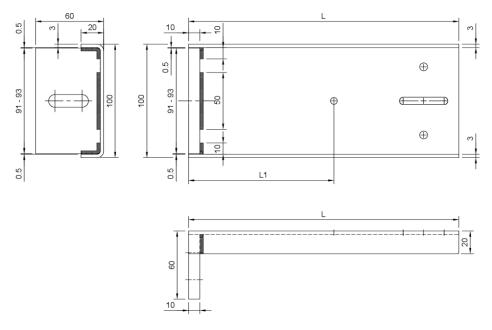


Figura A4.18: Ménsulas ES-INOX-(238/100; 267/100; 296/100 y 325/100)-A.

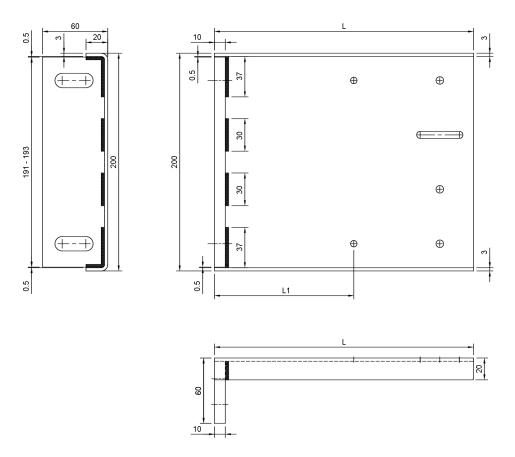
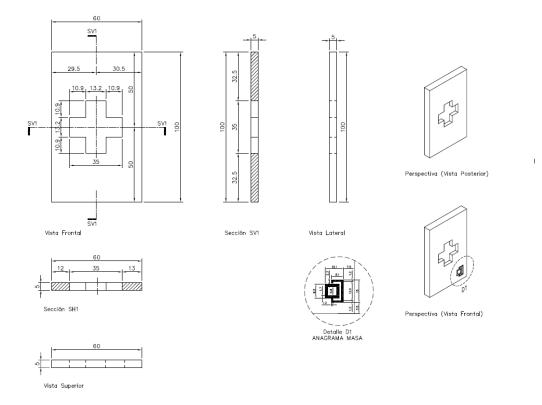



Figura A4.19: Ménsulas ES-INOX-(238/200; 267/200; 296/200 y 325/200)-E.

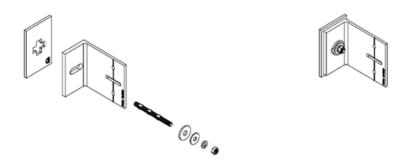


Figura A4.20a: Pieza de rotura del puente térmico. Termostop 100.

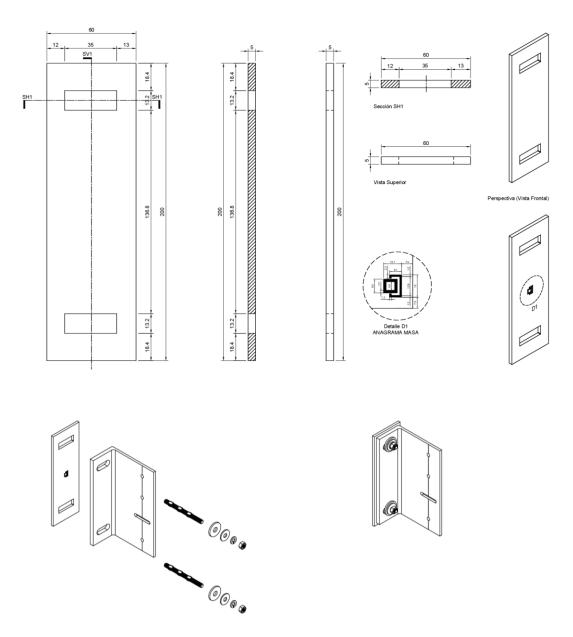


Figura A4.20b: Pieza de rotura del puente térmico. Termostop 200.

ANEXO 5: Fijaciones de la subestructura y otros componentes

A5.1. Tornillo de subestructura

Características geom	étricas		
		ST6,3x25 PB	
Forma		Cause	
Dimensiones (mm)	Tornillos autotaladrantes para la fijación de los perfiles horizontales a los perfiles verticales	ST6,3x25 PB	Véase la figura A3.3.1

Propiedades del material	Val	ores	Referencia
Tipo de material	Acero inoxidable Calidad A2-70	Acero inoxidable Calidad A4-80	EN ISO 3506-1
Límite elástico R _{p0,2} (MPa)	450	600	EN ISO 3506-1
Carga de rotura R _m (MPa)	700	800	EN ISO 3506-1
Elongación A (%)	0,4·d	0,3∙d	EN ISO 3506-1
Características de la rosca	De acuerdo con la norma de referencia		EN ISO 3506-4
Características de forma del tornillo con cabeza hexagonal de arandela	De acuerdo con la norma de referencia		EN ISO 15480
Características del taladro	De acuerdo con la	norma de referencia	EN ISO 10666

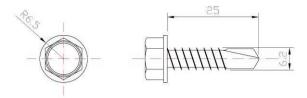


Figura A3.3.1: Tornillo ST6,3x25 PB.

A5.2. Otros componentes

Otros productos que no pertenecen al kit pero que necesitan la ejecución del kit PF-ALU-PL en la obra, son las fijaciones entre las ménsulas y el sustrato. Las especificaciones principales que deben cumplir estos productos para poder ser utilizados con el kit son las siguientes:

- Las fijaciones deben ser elegidas según el sustrato o el material estructural de soporte (hormigón, mampostería, madera o estructura metálica, etc.) y la resistencia necesaria debido a la carga de viento y a la carga muerta (resistencia al arrancamiento y resistencia a la fuerza cortante respectivamente).
- Diámetro mínimo de fijaciones: 8 mm. Diámetro mínimo de arandelas: 16 mm.
- Resistencia mínima al arrancamiento el material de sustrato: 4,0 kN.
- Resistencia mínima a la fuerza a cortante necesaria: 4,0 kN.
- Las fijaciones entre las ménsulas y el sustrato pueden tener el marcado CE a partir de un ETE según el EAD al que pertenezca (véase www.eota.eu) siempre que este marcado CE sea obligatorio en el Estado Miembro donde se utiliza el kit.

ANEXO 6: Criterios de diseño, instalación, mantenimiento y reparación

A6.1 Diseño

El diseño de la subestructura y fijaciones para la sujeción de elementos exteriores de revestimiento utilizando el kit PF-ALU-PL debería considerar:

- Para la sujeción de elementos de revestimiento cuando la subestructura está fijada a los frentes de forjado y al muro exterior (substrato), pueden ser utilizados todos los componentes de los kits definidos en los Anexos 2 a 5. Sin embargo, para la sujeción de elementos de revestimiento cuando la subestructura se fija únicamente a los frentes de forjado, se deberán evitar el uso de los perfiles verticales y las ménsulas de dimensiones menores a 80 (p.ej. los perfiles PF-AL-U-40, PF-AL-U-60 y PF-AL-T-60 y las ménsulas ES-ALU-45 y ES-ALU-67).
- Los perfiles verticales no deben ser utilizados con ménsulas de dimensiones menores (p.ej. los perfiles PF-AL-U-80 pueden ser utilizados con ménsulas ES-ALU-87 a ES-ALU-325 y ES-INOX-238 a ES-INOX-325 pero no pueden ser utilizados con ménsulas ES-ALU-67).
- El kit PF-ALU-PL puede ser utilizado para elementos de revestimiento con ranura y espesor entre 20 y 50 mm. El máximo peso y área deberá determinarse según las características mecánicas de los componentes del kit declaradas en esta ETE (véanse los apartados 3.4 a 3.11). La densidad máxima que puede ser considerada es 3000 kg/m3. La ranura (t = 5 mm) deberá situarse en la mitad del eje del espesor del elemento de revestimiento.
- Las grapas GR-PL-46 deberán posicionarse entre A/4 y A/5 del borde del elemento exterior de fachada, donde "A" es la longitud del elemento.
- Se asume que el muro exterior (sustrato) cumple con los requisitos necesarios respecto a la resistencia mecánica (resistencia a acciones estáticas y dinámicas) y respecto a la estanqueidad al aire, así como los aspectos relevantes en cuanto a la estanqueidad al agua y vapor de agua.
- Se asume que el elemento de revestimiento cumple los requisitos necesarios con respecto a la resistencia mecánica y respecto al comportamiento higrotérmico.
- La verificación mediante cálculo del diseño del sistema, teniendo en cuenta los valores de las características mecánicas de los componentes del kit (elemento de revestimiento, fijaciones del revestimiento y componentes de la subestructura), con el fin de resistir las acciones (peso propio, viento, etc.) que aplican específicamente en cada obra. Deben utilizase los coeficientes de seguridad nacionales.
- La selección y verificación de los anclajes entre las ménsulas y los muros exteriores (sustrato), teniendo en cuenta el material del sustrato y la resistencia mínima requerida (resistencia al arrancamiento y a la fuerza a cortante) según las acciones previstas obtenidas del cálculo mecánico del sistema diseñado.
- La adaptación del sistema diseñado a los movimientos del sustrato o movimientos estructurales.
- La ejecución de los puntos singulares de la fachada.
- La protección a la corrosión de los componentes metálicos del sistema debe ser seleccionada considerando la categoría de corrosión atmosférica (p.ej. de acuerdo con la norma ISO 9223) del lugar donde se encuentre la obra.
- La capacidad de drenaje de la cámara de aire ventilada entre los elementos de revestimiento y la capa de aislamiento o el paramento exterior respectivamente.
- La capa de aislamiento, en general, se fija al paramento exterior y se debe especificar de acuerdo con una norma armonizada, con una evaluación técnica europea.
- Cuando las juntas entre elementos de revestimiento no sean estancas, la primera capa detrás de la cámara de aire ventilada (p.ej. la capa de aislamiento) debe estar compuesta por materiales de baja absorción de agua.

A6.2 Instalación

La instalación de la subestructura y fijaciones para la sujeción de elementos exteriores de revestimiento utilizando el kit PF-ALU-PL debe realizarse:

- De acuerdo con las instrucciones del fabricante y utilizando los componentes indicados en esta ETE.
- De acuerdo con el diseño y planos preparados para cada obra específica. Es responsabilidad del fabricante asegurar que la información es aportada a aquellos a los cuales les concierne.
- Por personal cualificado y bajo la supervisión del responsable de la obra.

A6.3 Mantenimiento y reparación

El mantenimiento de la subestructura y fijaciones para la sujeción de elementos exteriores de revestimiento utilizando el kit PF-ALU-PL incluye inspecciones en obra, teniendo en cuenta los siguientes aspectos:

- La aparición de alguna deformación permanente irreversible.
- La presencia de corrosión o de acumulación de agua.

Cuando sea necesario, cualquier aparición en áreas dañadas localizadas se debe llevar a cabo con los mismos componentes y seguir las instrucciones de reparación dadas por el fabricante.